<table>
<thead>
<tr>
<th>Course</th>
<th>Cr</th>
<th>Sem</th>
<th>Title</th>
<th>Learning Objectives</th>
<th>Area</th>
<th>Trajectory</th>
<th>Notes</th>
</tr>
</thead>
</table>
| GH 502 | 2 | FALL| Intro to Quantitative Data Collection | 1. Understand and explain the importance of representative surveys
2. Explain the steps involved in conducting a survey
3. Describe the steps of survey development and how each is important
4. Plan appropriate sampling designs and conduct sample size calculations
5. Recognize appropriate methods for maintaining high data quality
6. Evaluate the quality of a survey and make recommendations for improvements
7. Develop a questionnaire
8. Plan the protocol for a representative survey
9. Develop a budget for primary data collection and analysis
10. Prepare a work plan for primary data collection | Research Methods, Surveys | M&E, Programs, Research | FALL BREAK COURSE - 2nd Students or permission from instructor |
| GH 503 | 3 | SPRING| Quantitative Data Collection | 1. Understand and explain the importance of representative surveys
2. Explain the steps involved in conducting a survey
3. Describe the steps of survey development and how each is important
4. Plan appropriate sampling designs and conduct sample size calculations
5. Recognize appropriate methods for maintaining high data quality
6. Evaluate the quality of a survey and make recommendations for improvements
7. Develop a questionnaire
8. Plan the protocol for a representative survey
9. Develop a budget for primary data collection and analysis
10. Prepare a work plan for primary data collection | Research Methods, Surveys | M&E, Programs, Research | Choice of requirements for the GH methods courses |
| GH 509 | 2 | SPRING| Translation and Implementation Science | 1. Use and interpret evidence to inform/support interventions, policies or programs
2. Learn about tools that help in designing, implementing and evaluating suitable translation projects/programs/research:
 a. Implementation frameworks
 b. Implementation research study designs and methods
 c. Intervention design, adaptation, implementation, and evaluation
 d. Organizational design, stakeholder engagement, and scalability
3. Analyze real-life case studies of research-based, social entrepreneurial, government-driven, or non-profit organization interventions to understand how knowledge is applied to policies and practice
4. Obtain a multi-disciplinary understanding of health problems, policy issues, and development
5. Understand the interconnectedness of political, economic, cultural, and structural environments and systems into which health interventions are to be introduced and maintained | Research Methods | M&E, Programs, Research |
<table>
<thead>
<tr>
<th>Course</th>
<th>Semester</th>
<th>Title</th>
<th>Objectives</th>
<th>Focus Topic</th>
<th>Prerequisite(s)</th>
<th>Notes</th>
</tr>
</thead>
</table>
| GH 510 | Spring | Epidemiological Methods in Complex Humanitarian Emergencies | 1. Determine which epidemiological methods are most appropriate for different phases of complex humanitarian emergencies (CHEs)
2. Appreciate how to rapidly assess the needs of a population following an emergency
3. Understand the fundamental principles of surveillance and become familiar with methods commonly used by field practitioners
4. Design a cross sectional survey for a population in complex humanitarian settings
5. Identify an outbreak of diseases of public health importance and respond accordingly
6. Understand how to estimate the population of refugees or IDPs
7. Have a working knowledge of new methods using in complex humanitarian emergencies | Complex Humanitarian Emergencies | Pre-requisite GH 512, BIOS 500, EPI 530. CHE certificate core | |
| GH 513 | Fall | Community Based Participatory Action Research | 1. Identify core principles of CBPAR and other community-based, participatory, and action-oriented approaches to research
2. Apply community-based and participatory strategies to identify, analyze and document a public health issue of concern
3. Apply participatory and action-oriented methods in planning, implementing and evaluating community based public health research and programming
4. Demonstrate group facilitation skills
5. Demonstrate skills in critical reflection regarding the researcher’s role in participatory research processes
6. Evaluate ethical considerations involved in participatory methods
7. Demonstrate effective communication, dissemination and presentation skills, specifically how to give and receive constructive feedback and generate public dialogue | CHD Programs, Research | Choice of requirements for the CHD concentration | |
| GH 514 | Spring | Social and Behavior Change Communication | 1. Describe a range of relevant web-based resources, prominent agencies and projects
2. Demonstrate a critical understanding of the role of an outside “change agent” in a resource-poor and/or post-colonial context
3. Compare health communication approaches, including highly participatory and more vertical, strategic approaches, appropriate to a range of health-related issues in a “developing world” context
4. Apply basic constructs from key behavioral and social change theories
5. Apply a toolbox of methods for use in the planning, development and implementation of health communication programs
6. Recommend channels and media, both traditional and modern, appropriate to audience, resources and program objectives in urban and rural “developing world” contexts
7. Critique existing health communication materials and programs
8. Design a context-specific communication strategy to address an issue of public health importance, incorporating a basic monitoring and evaluation plan | Health issues, from child survival to domestic violence sexual and Reproductive Health, Health Communications, HIV/AIDS | Programs, Policy | |
| GH 517/ EPI 517 | Fall | Case Studies in Infectious Disease Epidemiology | 1. Learn how to choose the appropriate methods, such as prevalence surveys, incidence surveys, and environmental microbiologic studies, for obtaining data in specific infectious disease problems
2. Construct from unorganized surveillance data appropriate line listings to describe pertinent data about infection episodes and risk factors for their occurrence
3. Characterize descriptive epidemiologic features (time, place, person), and summarize appropriate measures of risk and association, in infectious disease investigations
4. Describe and use concepts of reservoirs, sources, modes of acquisition and spread, incubation periods, communicability, and vectors in the analysis of infectious disease problems and in the design of measures for their control and prevention
5. Construct simple models of infectious diseases and use these models for predicting results of proposed control measures | Infectious Disease Epidemiology taught by a case study method | Pre-requisite/concurrently EPI 530 and BIOS 500- Crosslisted with EPI 517 | |
<table>
<thead>
<tr>
<th>Course</th>
<th>Type</th>
<th>Description</th>
<th>Prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>GH 521</td>
<td>FALL</td>
<td>Program Management</td>
<td>M&E, Programs, Required course for CHD, 2nd years ONLY.</td>
</tr>
<tr>
<td>GH 522</td>
<td>FALL/SPRING</td>
<td>Qualitative Research Methods</td>
<td>General Methods, Qualitative Methods Research Methods Evaluation Choice of requirements for the GH methods courses</td>
</tr>
<tr>
<td>GH 523</td>
<td>FALL</td>
<td>Quantitative Data Analysis</td>
<td>General Methods, Quantitative Methods Research Methods Evaluation Prerequisites: EPI 530 and BIOS 500. GH 503 strongly recommended.</td>
</tr>
<tr>
<td>GH 524</td>
<td>SPRING</td>
<td>Health Systems Performance and Health Systems Financing: Methods and Evidence</td>
<td>Health Care Financing, Programmatic Work, Community Health, Development Research, Program (Focused Topic) Pre-requisite: GH 501</td>
</tr>
<tr>
<td>Course Code</td>
<td>Semester</td>
<td>Credits</td>
<td>Title</td>
</tr>
<tr>
<td>-------------</td>
<td>----------</td>
<td>---------</td>
<td>-------</td>
</tr>
<tr>
<td>GH 525</td>
<td>FALL</td>
<td>3</td>
<td>Qualitative Data Analysis</td>
</tr>
<tr>
<td>GH 529</td>
<td>FALL</td>
<td>2</td>
<td>Water and Sanitation in Developing Countries</td>
</tr>
<tr>
<td>GH 530</td>
<td>SPRING</td>
<td>2</td>
<td>The GEMMA Seminar: Global Elimination of Maternal Mortality from Abortion</td>
</tr>
</tbody>
</table>

1. Understand the theoretical principles of qualitative data analysis
2. Know how to prepare data for analysis, and use the analytic tools of description, comparison, categorizing, conceptualizing and theory development
3. Understand the role of software programs in data analysis and use MAXQDA
4. Apply skills developed in the course to analyze a qualitative data set
5. Develop skills in writing and presenting qualitative research findings
6. Identify how to evaluate qualitative data analysis

1. Describe major environmental transmission routes of infectious agents
2. Describe and apply appropriate strategies to prevent and control infectious disease - including vaccines, antimicrobial therapy, behavior changes, and environmental interventions
3. Evaluate effectiveness of interventions to control or prevent infectious disease
4. Recognize, evaluate, and control environmental health hazards
5. Identify environmental health problems in low- and middle-income countries related to water, sanitation, and hygiene
6. Characterize and quantify exposures to microbial and chemical contaminants
7. Evaluate behavioral and socio-economic factors that affect environmental exposure
8. Identify appropriate technologies and interventions for addressing environmental health threats in resource-limited settings
9. Plan community interventions to address environmental hazards
10. Assess community-level water and sanitation access, use, and needs while considering cultural norms
11. Identify appropriate water and sanitation interventions based on community social, economic, and environmental characteristics
12. Describe the process for working with local government, NGOs, and community members to develop local water and sanitation projects
13. Develop and conduct a water quality monitoring project
14. Conduct a process and outcomes evaluation for water and sanitation projects
15. Develop training and educational programs for water, sanitation and hygiene interventions

1. Characterize the role of unsafe abortion in global maternal mortality
2. Develop a well-informed project that has potential to make significant progress toward GEMMA
3. Clarify personal values on abortion
4. Become an informed advocate for eliminating maternal mortality from abortion

1. Identify how to evaluate qualitative data analysis

Environmental Health, Infectious Diseases, Water and Sanitation Program (Focused Topic) WASH certificate class
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Term</th>
<th>Course Title</th>
<th>Prerequisites</th>
<th>Corequisites</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>GH 535/ EPI 531</td>
<td>SPRING</td>
<td>Field Epidemiology</td>
<td>Surveillance and Descriptive Epidemiology</td>
<td>Research, M&E</td>
<td>1. Understand the basic principles of applied epidemiology as practices in the files of investigation of diseases 2. Understand the principles of descriptive epidemiology 3. Appreciate the roles of the laboratory in the investigation 4. Able to develop a hypothesis 5. To know when an analytic epidemiology study should be initiated 6. To be familiar with the evaluation of the control and prevention measures 7. To know when to initiate control and/or prevention measures 8. To be able to confirm the existence of an epidemic 9. To be able to prepare for the initiation of the field investigation 10. To be able to develop a case definition and a case reporting form 11. Collect case data on the form 12. Describe the collected data by time, place and person 13. Identify the agent, method of transmission, and the susceptible host factors 14. Develop an hypothesis or initiate an analytic epidemiological study 15. Determine the appropriate control and/or prevention factor and initiate them</td>
</tr>
<tr>
<td>GH 543</td>
<td>FALL/ SPRING</td>
<td>Fundamentals of Qualitative Data Analysis</td>
<td>Research Methods. Qualitative Methods</td>
<td>Research, M&E</td>
<td>Pre-requisite: GH522 or equivalent. Short course</td>
</tr>
<tr>
<td>GH 544</td>
<td>FALL</td>
<td>Field Trials and Intervention Studies</td>
<td>Methods to community and facility based trials in resource poor settings</td>
<td>Research, M&E</td>
<td>1. Describe the different types of interventions and intervention development process 2. Design a simple field trial: a. Outline trial objectives and primary and secondary endpoints b. Compute sample size and estimate power c. Outline eligibility criteria d. Choose appropriate population e. Develop randomization and masking procedures f. Outline enrollment and follow up procedures 3. Analyze trial data including data for interim analysis 4. Design case report forms and outline a trial data management system 5. Describe regulatory requirements for conducting trials 6. Develop consent forms and informed consent procedures 7. Develop a study oversight plan; including plan for a Data Safety Monitoring Board (DSMB) 8. Write a report of study results per CONSORT guidelines</td>
</tr>
</tbody>
</table>

Surveillance and Descriptive Epidemiology | Research, M&E | Pre-requisites: EPI 530 or permission from instructor. Crosslisted with EPI 535 |
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Term</th>
<th>Course Title</th>
<th>Learning Outcomes</th>
<th>Additional Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>GH 545</td>
<td>SPRING</td>
<td>Nutritional Assessment</td>
<td>1. Students will be able to perform and evaluate anthropometric assessment of growth and body composition 2. Students will be able to collect and analyze various diet assessment methods (i.e. food recall and food frequency questionnaire) 3. Students will be able to discuss preparation and storage of various lab specimens 4. Students will be able to assess hematocrit as well as evaluate lab values for various nutrients 5. Students will be able to calculate the magnitude, distribution and trends of nutrition problems in populations by learning how to assess national food intake data 6. Students will learn rigorous nutrition research techniques by learning best practices for various nutrition assessment methods both domestically and internationally</td>
<td>Nutrition Methods, Nutritionist Pro Diet (Diet assessment software) M&E, Programs, Research Choice of requirements for the PN concentration</td>
</tr>
<tr>
<td>GH 555</td>
<td>SPRING</td>
<td>Proposal Development</td>
<td>1. Design research aims and objectives for a new or existing research project or public health program that addresses a specific public health problem using quantitative and/or qualitative evaluation methods 2. Plan data collection, methods, and fieldwork activities for a feasible and credible project 3. Compose a proposal that effectively communicates all major components of the project and follows all directions for the specific proposal</td>
<td>Research Methods, Surveys M&E, Programs, Research</td>
</tr>
<tr>
<td>GH 560</td>
<td>SPRING/FALL</td>
<td>Monitoring and Evaluation of Global Health Programs</td>
<td>1. Understand the basic concepts of program theory of change, including development of a logic model and intervention mapping 2. Develop a logframe that includes SMART indicators, with appropriate means of verification, and relevant assumptions and risks 3. Understand the key role of implementation research & process evaluation in assessing context, program fidelity and compliance 4. Develop a system for results-based monitoring & adequacy evaluation 5. Differentiate the advantages and disadvantages of counterfactual and comparison groups in probability and plausibility impact evaluations 6. Apply randomization, matching, and difference-in-difference, and full coverage evaluation approaches 7. Develop a coherent sampling frame, sampling strategy and calculate an appropriate sample size 8. Understand key concepts of M&E, including data visualization and choosing the right evaluation approach</td>
<td>Programmatic Work, community Metrics, Evaluation research M&E, Programs, Research Choice of requirements for the GH methods courses</td>
</tr>
<tr>
<td>GH 568</td>
<td>SPRING</td>
<td>Community Engaged Food Security</td>
<td>1. Map the underlying and primary determinants of food choices and food access and describe the associations between them 2. Identify public health, nutrition and community development outcomes that are directly and indirectly related to food insecurity and low food access 3. Assess methodologies to monitor and evaluate community food systems, food availability and accessibility 4. Evaluate local, domestic, and international strategies that affect the availability of, access to, and choice for healthy, local, fresh food 5. Apply relevant methods to: a. Assess food insecurity and low food access among marginalized communities in the Atlanta area b. Identify the determinants of access and availability of healthy foods in these populations and/or c. Recommend sustainable and equitable strategies to address food insecurity 6. Engage stakeholders, community partners, and community members in dialogue to characterize access and availability healthy, fresh foods in marginalized and/or food desert communities in metro-Atlanta 7. Engage in dialogue on barriers and facilitators to accessing healthy sustainable foods 8. Identify feasible / effective strategies to improve access to healthy and local foods in the Atlanta area</td>
<td>Nutrition, Community Health Programs, Research Class is offered alternatively with GH 567, Food Policy</td>
</tr>
<tr>
<td>Course Code</td>
<td>Credits</td>
<td>Term</td>
<td>Course Title</td>
<td>Description</td>
</tr>
<tr>
<td>-------------</td>
<td>---------</td>
<td>-------</td>
<td>--------------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>GH 569</td>
<td>2</td>
<td>FALL</td>
<td>Population Dynamics, International Development and Health</td>
<td>Students will about how issues such as economic growth, environmental change, international politics, and culture interact with population forces such as fertility, aging, mortality, and migration, in ways that affect health and public health practice. The course will provide an introduction to concepts and methods from demography to basic data analysis using Stata. Training will include lectures and structured debates, reading and discussion of published research and policies, and critical research and writing.</td>
</tr>
</tbody>
</table>
| BIOS 501 | 4 | SPRING| Statistical Methods II | 1. Addresses estimation and hypothesis testing within the context of the general linear model
2. Examines in depth the analysis of variance, multiple regression, and logistic regression
3. Previews select advanced techniques. BIOS 501 picks up where BIOS 500 leaves off, and provides students who have already mastered fundamental concepts with an opportunity to develop mastery of more advanced techniques and concepts
4. Statistical modeling is used in every aspect of public health, from forecasting models applied to data for policy and management, to modeling relationships between exposures and outcomes while adjusting for confounders in environmental, behavioral and epidemiological studies
5. Students in this course will develop the analytical skills, but also through the midterm project, receive critical training in technical writing and manuscript preparation under game conditions with a real-world dataset
6. Students will be exposed to messy data problems like missing and mismeasured data, non-normal outcomes, data management issues and model selection decisions – all of which are commonplace in public health research settings | Statistical Methods | Research, M&E |
| BIOS 502 | 4 | FALL | Statistical Methods III | 1. Calculate, interpret and present selected descriptive statistics (specifically for longitudinal data)
2. Compute selected inferential statistics (e.g., confidence intervals, hypotheses testing as applied to longitudinal data)
3. Use computer statistical software for both data management and data analyses
4. Assist in the interpretation of study results
5. Communicate the results of the study both orally and in writing
6. Understand and adhere to guidelines of responsible research
7. Issues involved with the analysis of repeated measures data, particularly missing data, are also covered | Statistical Methods | Research |
| BIOS 522 | 2 | FALL | Survival Analysis | 1. Students will understand the basic theoretical concepts underlying survival analysis
2. Students will learn to analyses survival data using the most important statistical techniques, such as the Kaplan Meier method, the logrank test and Cox regression
3. Students will learn to use computer software packages, such as SAS and R, to analyze real-life survival data
4. Students will learn to interpret the results of their analyses and communicate them to researchers from other medical and health-related fields | Statistical Methods | Research |

Pre-requisite: BIOS 500 and BIOS 501.
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Section</th>
<th>Semester</th>
<th>Course Title</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOS 544</td>
<td>2</td>
<td>FALL</td>
<td>Introduction to R</td>
<td>The goal of the course is to provide an introduction to R in organizing, analyzing, and visualizing data. Once you've completed this course you'll be able to enter, save, retrieve, summarize, display and analyze data. Learning Objectives: 1. Utilize information technology tools and statistical programming packages in preparing scientific reports 2. Apply descriptive techniques commonly used to summarize public health data</td>
</tr>
<tr>
<td>BIOS 550</td>
<td>2</td>
<td>FALL and SPRING</td>
<td>Sampling Applications</td>
<td>BIOS 501 picks up where BIOS 500 leaves off, and provides students who have already mastered fundamental concepts with an opportunity to develop mastery of more advanced techniques and concepts. Statistical modeling is used in every aspect of public health, from forecasting models applied to data for policy and management, to modeling relationships between exposures and outcomes while adjusting for confounders in environmental, behavioral and epidemiological studies. Students in this course will: 1. Develop the analytical skills, but also through the midterm project, receive critical training in technical writing and manuscript preparation under game conditions with a real-world dataset 2. Be exposed to messy data problems like missing and mismeasured data, non-normal outcomes, data management issues and model selection decisions – all of which are commonplace in public health research settings</td>
</tr>
<tr>
<td>EH 515</td>
<td>2</td>
<td>SPRING</td>
<td>Air Quality in the Urban Environment</td>
<td>1. Identify the key urban air pollutants based on their physical and chemical properties and their impact on human health and the environment 2. Identify the major sources of urban air pollution, their trends, fate and transport in the atmosphere 3. Perform basic air pollution calculations to estimate ambient concentrations of pollutants 4. Interpret and utilize online databases of air pollution monitoring information 5. Understand the role of meteorological factors and photochemistry in the formation and dispersion of urban air pollution 6. Display familiarity with methods for measuring urban air pollution including direct sampling and modeling techniques 7. Demonstrate knowledge of the role of air pollution exposure assessment in promoting environmental health</td>
</tr>
<tr>
<td>EH 524</td>
<td>2</td>
<td>FALL</td>
<td>Risk Assessment I</td>
<td>1. Become familiar with common methods and assumptions used in environmental (human) health risk assessment 2. Examine motivations of various stakeholders involved in risk estimation activities (e.g. government, industry, the press and the concerned public), and how those motivations influence risk perceptions 3. Understand how risk assessment is used by various groups and U.S. agencies, and how that use may change in the future 4. Develop skills in evaluating the uses and limitations of human health risk descriptions and gain experience with methods to characterize the uncertainties</td>
</tr>
<tr>
<td>EH 527</td>
<td>2</td>
<td>SPRING</td>
<td>Biomarkers and Environmental Public Health</td>
<td>The study of human susceptibility to environmental toxic chemicals is about to undergo a major transformation as the new knowledge of how toxic chemicals behave in the body is becoming more readily available. Coupled with the advances Human Genome Project and the ecogenetic research programs, the use of biomarkers will allow us not only to accurately assess the exposures to those toxic chemicals, but to predict the resulting adverse health outcomes as well. This course is designed to introduce the use of biomarkers in environmental public health from qualitative and quantitative perspectives.</td>
</tr>
<tr>
<td>Course Code</td>
<td>Semester</td>
<td>Description</td>
<td>Prerequisite(s)</td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>----------</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>EH 530</td>
<td>SPRING</td>
<td>Environmental and Occupational Epidemiology</td>
<td>Pre-requisite: EPI 530</td>
<td></td>
</tr>
<tr>
<td>EH 548</td>
<td>SPRING</td>
<td>Research Methods for Studies of Water and Health</td>
<td>Methods in EH: WASH M&E, Programs, Research (Focused Topic)</td>
<td></td>
</tr>
<tr>
<td>EHS 747</td>
<td>FALL</td>
<td>Advanced Environmental EPI</td>
<td>Pre-requisite: EPI 530, BIOS 500, BIOS 501; EPI 534 is also preferred. Crosslisted with EPI 747</td>
<td></td>
</tr>
<tr>
<td>EHS 750</td>
<td>SPRING</td>
<td>The Environmental Determinants of Infectious Disease</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EHS 760</td>
<td>SPRING</td>
<td>Advanced Risk Assessment</td>
<td>Pre-requisite: EH 524</td>
<td></td>
</tr>
<tr>
<td>Course Code</td>
<td>Term</td>
<td>Title</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>------</td>
<td>-------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EPI 533</td>
<td>SPRING</td>
<td>Programming in SAS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EPI 536</td>
<td>FALL</td>
<td>Applied Data Analysis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EPI 539</td>
<td>SPRING</td>
<td>Epidemiologic Concepts & Analysis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EPI 565</td>
<td>SPRING</td>
<td>Data Sources and Methods in MCH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EPI 590R</td>
<td>Fall Break</td>
<td>R Bootcamp</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EPI 533 Programming in SAS

This is an applied computer course that provides an introduction to the SAS programming environment and instructs students in the techniques needed to enter data into a database and to properly organize and edit data into a final dataset that is ready for epidemiologic analysis. Mastery of SAS programming techniques at the level required to proficiently organize and clean data for the epidemiology thesis project. The class will focus on database manipulation and will not cover statistical testing.

EPI 536 Applied Data Analysis

The purpose of this course is to prepare the student for analysis of epidemiologic data from various study designs including cross-sectional, case-control, and follow-up studies. The student will have the opportunity to apply the methods taught in the epidemiology methods sequence to actual data sets. After completion of the course, the student will be prepared to do the data analysis for their thesis. The course will use the statistical program, Stata, for all analyses and therefore some time will be spent in learning the fundamentals of Stata. We will analyze multiple data sets and apply epidemiologic and statistical methods such as exact tests for 2x2 tables, stratified analysis, logistic regression, and survival techniques appropriate for epidemiologists. The course will be applied and will emphasize the use of Stata to solve various epidemiologic problems using a wide range of data sets.

EPI 539 Epidemiologic Concepts & Analysis

1. Understand the importance of causal frameworks in epidemiology
2. Recognize the major threats to validity of epidemiologic studies
3. Apply methods to mitigate and correct for biases in epidemiologic studies
4. Understand the concept of interaction and analyze data to assess its presence
5. Use different study designs to address relevant epidemiologic questions
6. Understand evaluations of precision
7. Use logistic regression for bivariate and multivariate analyses

EPI 565 Data Sources and Methods in MCH

1. List basic surveillance techniques applicable to MCH and FP programs: vital statistics (data collection procedures, evaluation, analysis); selected CDC and/or state surveillance systems (e.g., birth defects, injury, child abuse); selected CDC surveys including state sampling frames: e.g., Children with Special Health Care Needs (CSHCN), Child Health Survey, BRFS, YRBS, PRAMS, PNNS, PedsNS; those without state sampling frames: NSFG, US Mexico Border Survey, and state surveys, e.g., Georgia Women’s Health Survey, etc.
2. Use Perinatal Periods of Risk to help develop a strategy to lower infant mortality
3. Calculate specialized indices such as the Kotelchuck index of adequacy of prenatal care
4. Define and use deterministic and probabilistic record linkage methods
5. Describe the CDC recommended approach to analysis of cluster of public health events
6. List and describe the 12 recommendations for action at state and federal level to support enhanced MCH epidemiology functioning

EPI 590R R Bootcamp

This 2-day short course provides students with a basic introduction to the open source statistical computing software R. By focusing on basic R syntax, data operations (importing data, manipulating data, exporting data, summarizing data) and graph functions.

Pre-requisites:
- EPI 530 and BIOS 500
- Concurrent enrollment in BIOS 501 is preferred, but not required.
<table>
<thead>
<tr>
<th>Year</th>
<th>Semester</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPI 591L</td>
<td>FALL</td>
<td>Methods in Nutrition Epidemiology</td>
<td>This course provides an overview of methods for estimating dietary intakes including 24-hour dietary recalls, food records, brief dietary instruments (screeners) and food frequency questionnaires in various formats (e.g. self and interview-administered in person, via the telephone and internet-based approaches). Issues related to the collection, processing, analysis and manipulation of dietary data in relation to foods, dietary patterns, nutrients, and dietary supplements and for specific research designs and special populations will also be addressed. The assessment, monitoring, and evaluation of diet quality are critical components of public health programs including the Supplemental Food Program for Women Infants and Children (WIC), the Supplemental Nutrition Assistance Program Education (SNAP-Ed), the Expanded Food and Nutrition Education Program (EFNEP) and the Child and Adult Care Food Program (CACFP).</td>
<td></td>
</tr>
</tbody>
</table>
| EPI 591S | FALL | Social Epidemiology | Upon completion of the course students should understand fundamental principles of social epidemiology, including the:
• Influence of social factors on health and disease in human populations
• Application of theory to social epidemiology topics
• Measurement variables and considerations of key social influences
• Application of epidemiologic methods learned in previous coursework to social epidemiology
• Application of epidemiologic principles related to social epidemiology, both from a U.S. and international perspective |
| HPM 510 | FALL | Financial and Managerial Accounting | 1. Use basic accounting concepts, analytical techniques, decision-making and vocabulary for financial management of organizations
2. Interpret and use accounting information to make managerial decisions |
| HPM 522 | SPRING | Economic Evaluation of Health Care Programs | 1. Learn the four general forms of economic evaluation: cost minimization analysis; cost effectiveness analysis, cost utility analysis, and cost benefit analysis
2. Identify the circumstances in which the different forms of economic evaluations should be applied
3. Learn how to design an economic evaluation
4. Learn approaches to calculating the cost component of an economic evaluation
5. Learn the structure and purpose of cost of illness studies
6. Learn how to choose, measure the consequences (outcomes) of treatments/programs and incorporate them into evaluations, along side costs
7. Learn how to build and interpret decision analytic models
8. Learn how to analyze and interpret basic data from a decision analytic model
9. Learn how to calculate the quality-adjusted life years (QALYs)
10. Learn how to interpret the results of different types of economic evaluations
11. Learn how to critique existing economic analyses of health care programs
12. Develop an understanding of how economic theory affects certain forms of economic evaluation
13. Understand the application of all of the above on public health |

Pre-requisite: HPM 500 and HPM 521 or instructor permission
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Term</th>
<th>Credits</th>
<th>Title</th>
<th>Description</th>
<th>Prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>INFO 503</td>
<td>FALL</td>
<td>2</td>
<td>Management of Public Health Informatics</td>
<td>The purpose of this course is to allow students to gain an understanding of the multiple dimensions of management related to: 1. Managing, implementing and evaluating information systems projects 2. Operations, maintenance and support of information systems 3. Defining and managing the information systems organization 4. Defining and managing the portfolio of information systems projects</td>
<td>Prerequisite: INFO 500 and INFO 501</td>
</tr>
<tr>
<td>INFO 511</td>
<td>SPRING</td>
<td>3</td>
<td>Analytics</td>
<td>This course covers the principles of data visualization, both for presentation and analysis. Using commercial and open source software, we will explore different data visualization techniques and the design principles.</td>
<td>pre-requisites: BIOS 500 and BIOS 501</td>
</tr>
<tr>
<td>INFO 521</td>
<td>FALL</td>
<td>3</td>
<td>Database Development for Public Health</td>
<td>This course will cover the principles utilized in data management and database development for purposes of Public Health. This is primarily a skills-based course. The students will learn: 1. To create a relational database using Microsoft Access 2013 2. Gain an understanding of the important terminology, standards and data management principles utilized by data management teams</td>
<td>No prequisites but must be a 2nd year student</td>
</tr>
<tr>
<td>INFO 530</td>
<td>FALL</td>
<td>2</td>
<td>Geographic Information Systems</td>
<td>The course introduces the use of geographic information systems (GIS) in the analysis of public health data. We develop GIS skills through homework and case studies, and particularly address basic GIS operations such as buffering, layering, summarizing, geocoding, digitizing and spatial queries.</td>
<td></td>
</tr>
<tr>
<td>INFO 532</td>
<td>FALL</td>
<td>4</td>
<td>Principles of Geographic Information Systems</td>
<td>The course introduces the use of geographic information systems (GIS) in the analysis of public health data. We develop GIS skills through homework and case studies, and particularly address basic GIS operations such as buffering, layering, summarizing, geocoding, digitizing and spatial queries.</td>
<td>Prerequisites: INFO 500 and INFO 511</td>
</tr>
<tr>
<td>INFO 540</td>
<td>FALL</td>
<td>2</td>
<td>Informatics and Analytics for Public Health Surveillance</td>
<td>In this class students will learn about the use of advanced state-of-the-art computing technologies to synthesize very large datasets to support decisions in public health surveillance and research.</td>
<td>Prerequisites: INFO 500 and INFO 511</td>
</tr>
<tr>
<td>INFO 550</td>
<td>FALL</td>
<td>2</td>
<td>Informatics and Analytics for Public Health Surveillance</td>
<td>In this class students will learn about the use of advanced state-of-the-art computing technologies to synthesize very large datasets to support decisions in public health surveillance and research.</td>
<td>Prerequisites: INFO 500 and INFO 511</td>
</tr>
</tbody>
</table>