DEPARTMENT: BIOS
COURSE NUMBER: 726 SECTION NUMBER: 1 SEMESTER: Spring
CREDIT HOURS: 2
COURSE TITLE: Applied Multivariate Analysis

INSTRUCTOR NAME: Mary E. Kelley, PhD

INSTRUCTOR CONTACT INFORMATION
EMAIL: mekelle@sph.emory.edu
PHONE: (404) 712-0804
SCHOOL ADDRESS OR MAILBOX LOCATION:
OFFICE HOURS: F 2:30 – 4:00

COURSE DESCRIPTION (3-4 Sentences)
The course covers multivariate analysis methods including multivariate regression and ANOVA, data reduction through the use of principal components or factor analysis, multivariate classification and clustering methods. Where applicable, nonparametric and/or categorical adaptations of traditional multivariate normal analyses will also be presented. Prerequisites include BIOS 510, 511 or equivalent.

EVALUATION
70% of the grade will be based on homework assignments. Students will also conduct analysis of a research dataset based on one of the presented techniques and write up the conclusions in a scientific paper that will be 30% of the grade.

Datasets will be provided/chosen by the instructor.

ACADEMIC HONOR CODE
The RSPH requires that all material submitted by a student in fulfilling his or her academic course of study must be the original work of the student.
LEARNING OBJECTIVES OR COMPETENCIES OF THE COURSE

- to understand the uses of multivariate techniques in the analysis of research data;

LEARNING OBJECTIVES OR COMPETENCIES FOR THE DEPARTMENT OR PROGRAM TO WHICH THE COURSE CONTRIBUTES

The purpose of this course is to give both masters and doctoral level students experience with multivariate techniques in the analysis of research data.
Syllabus: Applied Multivariate Analysis

Required textbooks:

Supplemental readings:

1) Introduction to multivariate data
 a) Data structure and the multivariate problem (JW, chpt 1)
 b) Measures of distance
 c) Matrix Algebra review (length and topics depend on class composition) (JW, chpt 2)
 d) Multivariate estimation (JW, Chpt 4, KN1 chpt 1-2)
2) Multivariate regression and MANOVA (JW 6.3 – 6.10, 7; KN1, chpts 3-4)
3) Repeated measures as a multivariate problem (JW 6.1-6.2, KN1 chpt 5,6 (opt mixed))
4) Data reduction
 a) Principal components analysis (JW Chpt 8; KN2 chpt 2)
 b) Factor analysis
 i) MVN based inference (JW chpt 9; KN2 chpt 4)
 ii) Ordinal and binary FA (supp)
5) Path analysis and structural equation modeling (SEM) (supp)
6) Classification and clustering
 a) Discriminant analysis (JW chpt 11, KN2, chpt 5)
 b) Nonparametric classification (classification and regression trees, recursive partitioning)
 c) MVN-based clustering methods (JW chpt 12; KN2 chpt 6)
 i) hierarchical clustering
 ii) k-means
 iii) multidimensional scaling (MDS)
 d) Categorical clustering methods (supp)